

CONIC SECTIONS (CONICS)
mopronote

- The conic sections are curves obtained by the intersection of a right circular cone and a plane. According to the angle of intersection the conic is an ellipse, a parabola or a hyperbola. A circle is also a conic - it's a special case of an ellipse.

CONIC SECTIONS

- Ellipse is a closed curve which is symmetrical about both its axes.
- Fixed points F1 and F2 are called foci of an ellipse.
- The line segment through the foci is the major axis. Perpendicular to the major axis through the centr is the minor axis.
- The points where the axes cut the ellipse are the vertices.
- The midpoint of the vertices is the centre of the ellipse.
horizontal ellipse

- Given two fixed points F1, F2 called the foci and a distance 2a which is greater than the distance between the foci. The ellipse is the set of points P such that the sum of the distances |PF1| and |PF2| is equal to 2 a.

Figure 1

ELLIPSE $\quad E=\left\{P \in \mathbb{R}^{2}| | P F_{2}\left|+\left|P F_{1}\right|=2 a\right\}\right.$

General equation of ellipse

Standard equation of ellipse

$$
A x^{2}+B y^{2}+C x+D y+E=0 \quad A, B>0
$$

EQUATIONS OF ELLIPSE

- $x^{2}+36 y^{2}-1=0$ is equation of a real ellipse.
> $x^{2}+36 y^{2}+1=0$ is not equation of a real ellipse.

TASKS

- Find the centre of the ellipse.
> Find the lengths of axis of this ellipse.
- Find the equation of this ellipse.

TASKS

- Find the centre of the ellipse.
> Find the lengths of axis of this ellipse.
- Find the equation of this ellipse.

$$
\frac{(x-4)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
$$

- Find the centre and vertices of the ellipse. Sketch the ellipse.
$4 x^{2}+25 y^{2}=100$

TASKS FOR STUDENTS

- Find the centre and vertices of the ellipse. Sketch the ellipse.

$$
\begin{aligned}
4 x^{2}+25 y^{2} & =100 \\
\frac{x^{2}}{25}+\frac{y^{2}}{4} & =1
\end{aligned}
$$

TASKS FOR STUDENTS

- Find the centre and vertices of the ellipse. Sketch the ellipse.

$$
\begin{gathered}
4 x^{2}+25 y^{2}=100 \\
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
\end{gathered}
$$

TASKS FOR STUDENTS

- Hyperbola is a two-branched open curve
- Fixed points F1 and F2 are called foci of a hyperbola
- The line through the F1 and F2 is the transverse axis and the line through the centre perpendicular to the transverse axis is the conjugate axis.
- The points the transverse axis cuts the hyperbola and the vertices
- The midpoint of the vertices is the centre of the hyperbola
- The two separate parts of the hyperbola are the two branches.
- Every hyperbola has two asymptotes which cross the centre of hyperbola. Hyperbola approachs the asymptotes.

HYPERBOLA

A hyperbola is a set of points, such that for any point P of the set, the absolute difference of the distances $\left|P F_{1}\right|,\left|P F_{2}\right|$ to two fixed points F_{1}, F_{2} (the foci) is constant, usually denoted by $2 a, a>0$:

$$
H=\left\{P:\left|\left|P F_{2}\right|-\left|P F_{1}\right|\right|=2 a\right\} .
$$

DEFINITION OF HYPERBOLA

Horizontal Hyperbola (x^{2} comes first)	Vertical Hyperbola (y^{2} comes first)
$\text { At }(0,0): \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ General: $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ $a^{2}+b^{2}=c^{2}$ Center: $(h, k) \quad$ Foci: $(h \pm c, k)$ Vertices: $(h \pm a, k) \quad$ Co-Vertices: $(h, k \pm b)$ Asymptotes: $y-k= \pm \frac{b}{a}(x-h)$	

TASK FOR STUDENTS

- Determine equation of a hyperbola given its graph.
- Determine equations of asymptotes of this hyperbola.

TASK FOR STUDENTS

- Determine equation of a hyperbola given its graph.
- Determine equations of asymptotes of this hyperbola.

$$
\frac{x^{2}}{4}-y^{2}=1
$$

TASK FOR STUDENTS

- Determine equation of a hyperbola given its graph.
- Determine equations of asymptotes of this hyperbola.

$$
\frac{x^{2}}{4}-y^{2}=1
$$

$$
y=\frac{1}{2} x
$$

$$
y=-\frac{1}{2} x
$$

(a)

(b)

- Parabola is an open curve. It is the locus of a point that moves in a plane so as to be equidistant from a fixed line and a fixed point.
- The fixed line is called the directrix.
- The fixed point is called the focus.
- The line through the focus perpendicular to the directrix is the axis of the parabola.
- The point where the axis cuts the parabola is the vertex. It is possible to take the vertex as the origin.

PARABOLA

TASK FOR STUDENTS

- Find equations of these parabolas.

TASK FOR STUDENTS

- Find equations of these parabolas.

$$
\begin{gathered}
y=(x+1)(x-3) \\
y=-2(x+1)(x-3)
\end{gathered}
$$

Find the vertex of parabola $y=x^{2}-2 x+5$

TASK

- Find the vertex of parabola $y=x^{2}-2 x+5$
$y=x^{2}-2 x+1-1+5$

TASK

- Find the vertex of parabola $y=x^{2}-2 x+5$
- $y=x^{2}-2 x+1-1+5$
- $y=(x-1)^{2}+4$

TASK

- Find the vertex of parabola $y=x^{2}-2 x+5$
$y=x^{2}-2 x+1-1+5$
- $y=(x-1)^{2}+4$
- The vertex is $[1 ; 4]$

TASK

- Find an equation for the circle with radius 2 and centre at $[3 ; 4]$.
- Find an equation for the parabola which passes through the point $[1 ; 3]$. and has vertex at [2;4].
- Find an equation for the hyperbola with centre at $[0 ; 0]$ such that major axis is paraller to x-axis and the length of major axis is 2 and the length of minor axis is 1 .
- Find an equation for the ellipse with centre at $[-3 ; 5]$ such that major axis is paraller to y-axis and the length of major axis is 3 and the length of minor axis is 4 .

TASK FOR STUDENTS

THANK YOU FOR ATTENTION

